Extra Practice

In Exercises 1 and 2, find the coordinates of point Q along the directed line segment LM so that LQ to QM is the given ratio.

1.
$$L(-1, -2), M(3, 6); 5 \text{ to } 3$$

2.
$$L(2, 7), M(-1, 1); 2 \text{ to } 1$$

3. Tell whether the lines through the given points are parallel, perpendicular, or neither. Justify your answer.

Line 1: (2.5, -2), (9.5, 12) Line 2: (-4, -2), (8, -4)

Line 2:
$$(-4, -2)$$
, $(8, -4)$

- **4.** Write an equation of the line passing through point P(-1, -4) that is parallel to y = -6x + 8.
- **5.** Write an equation of the line passing through point P(-1, 3) that is perpendicular to y = 4x - 7.

In Exercises 6 and 7, find the distance from point P to the given line.

6.
$$P(4, 8), 6 = y + 2x$$

7.
$$P(-2, 1), y = \frac{1}{4}x - 3$$

- **8.** A line through (-1, b) and (c, 8) is parallel to a line through (-6, 3) and (0, 12). Find values of b and c that make the above statement true.
- **9.** The graph shows three lines. The slope of line ℓ_1 is m_1 , where $-1 \le m_1 < 0$.
 - **a.** Lines ℓ_1 and ℓ_2 are parallel. What do you know about the slope of line ℓ_2 ?
 - **b.** Lines ℓ_1 and ℓ_3 are perpendicular. What do you know about the slope of line ℓ_3 ?
 - **c.** What is the relationship between ℓ_2 and ℓ_3 ? Justify your answer.

- **10.** Two lines are perpendicular. Is it possible for the lines to have the same y-intercept? Justify your answer.
- **11.** The diagram shows a map of a playground. The water fountain lies directly between the swings and the slide. The distance from the swings to the water fountain is one-third the distance from the water fountain to the slide. What point on the graph represents the water fountain?

